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Presntly, there are two most frequently used parameterezations of linear x-y coupled motion in an 

accelerator. They are Edwards-Teng parametrization and Mais-Ripken parameterization. The article is 
devoted to look into close relationship between the two representations, thus adding a clarity to their 
physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second 
order moments and  the bilinear form representing the particle ellipsoid in the 4D phase space. The 
considered representation is a further development of Mais-Ripken parameteresation. The particle motion is 
descrabed by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances 
which have a meaning similar to the Courant-Snyder parametrization. In comparison with Edwards-Teng 
parameterization  the chosen parametrization has an advantage that it works equally well for analysis of 
coupled betatron motion in circular accelerators and in transfer lines. Considered relationship between 
second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and 
experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and 
Derbenev’s vertex-to-plane adapter. 

Introduction 
 In many applications analysis of coupled betatron motion is an important part of the 
machine design. The development of accelerator technology has stimulated additional 
interest in the subject in recent years. Initially betatron coupling was an undesired effect and 
efforts were made to suppress it. However, over recent years betatron coupling has become 
an intrinsic part of many accelerator proposals[1-4]. Although many studies of the coupled 
motion have been performed over the last 30 years[5-14], in our opinion there is still no 
representation of coupled betatron motion that would be as elegant as the Courant-Snyder 
parametrization[15] for the one-dimensional case. Presently, two different basic 
representations are most frequently used. The first one was proposed by Edwards and 
Teng[5,6] and the second one by Mais and Ripken[7,8]. This article follows the steps of the 
second representation, where in addition to four beta-functions and two betatron phases we 
introduce four alpha-functions. That yields a complete set of ten independent parameters to 
parametrize a 4×4 symplectic transfer matrix. The beta-functions have similar meaning to the 
Courant-Snyder parametrization, and the definition of alpha-functions coincides with the 
standard one in regions with zero longitudinal magnetic field, where they are equal to 
negative half-derivatives of the beta-functions. The article also gives a correspondence 
between the proposed parametrization and the Edwards-Teng parametrization. It reveals 
their close interconnection and it simultaneously lends more clarity to their physical 
meaning. 
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 The first section is mainly based on references [6], [8] and [16]. They describe the 
equations of motion, the notation and the basics of the theory developed in the 50’s and the 
60’s. Section 2 sets relations between eigen-vectors, emittances and the particle 4D-ellipsoid 
in the phase space. Sections 3−5 develop the proposed representation and Section 6 shows 
its correspondence to the Edwards-Teng  parametrization. 

1. Equations of Motion and Condition of Symplecticity 
 The two-dimensional linear motion of a particle in a focusing lattice structure can be 
described by the following set of equations: 
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Here x and y are the horizontal and vertical particle displacements from the ideal orbit; the 
derivatives are calculated along the longitudinal coordinate s; PceBK xyyx /,, = ; PceGk /= ; 

PceGN s /= ; PceBR s /= ; Bx , By and Bs are the corresponding components of the 
magnetic field; G is the normal component of the magnetic field gradient; and sG  is the 
skew component of the magnetic field gradient (a quad tilted by +45 deg around the s axis in 
the right-handed coordinate system).  

The Hamiltonian8 corresponding to Eq. (1.1) is  
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and the corresponding canonical momenta are 
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Rewriting Eq. (1.3) in matrix form we obtain the relation between the canonical, x̂ , and the 
geometric coordinates, x, 

Rxx =ˆ    ,         (1.4) 
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θx x= ′  and θy y= ′ . Here and below we put a cap above transfer matrices and vectors 
related to the canonical variables. 
 Introducing matrix H, 
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one can rewrite Eqs. (1.1) and (1.2) in the matrix form: 
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where the unit symplectic matrix U is introduced as follows, 
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 For any two solutions of Eq. (1.7), )(ˆ 1 sx  and )(ˆ 2 sx , one can write that  
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and, consequently,  
constˆˆ 21 =xUx T   .       (1.11) 

The above integral of motion is called the Lagrange invariant. Above in Eq. (1.10) the 
following properties of the unit symplectic matrix were employed: IUU =T  and IUU −= , 
where I is the identity matrix.   
 Let us introduce the transfer matrix from coordinate 0 to coordinate s, 0),0( xMx s= , 

and the corresponding transfer matrix for the canonical variables, 0ˆ),0(ˆˆ xMx s= . Using Eq. 
(1.4) one finds that the matrices are bound up as following  

1)0(),0()(),0(ˆ −= RMRM sss  .     (1.12) 
Taking into account that the invariant of Eq. (1.11) does not change during motion, we can 
write that  

constˆ),0(ˆ),0(ˆˆˆˆ 0000 == xMUMxxUx ss TTT    .    (1.13) 
As the above equation is satisfied for any x̂  it yields  

UMUM =),0(ˆ),0(ˆ ss T   .      (1.14) 
Eq. (1.16) expresses the symplecticity condition for particle motion. It is equivalent[16] to 
n2=16 scalar equations, but taking into account that the matrix ),0(ˆ),0(ˆ ss T MUM  is 
antisymmetric, only six ((n2−n)/2 = 6) of these equations are independent. Consequently, 
only 10 of 16 elements of the transfer matrix are independent. Thus, the symplecticity 
condition imposes more severe limitations than Liouville’s theorem, which imposes only one 
condition, det(M)=1, and leaves 15 independent parameters. 
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 Consider a circular accelerator with the total transfer matrix M̂ . The transfer matrix has 
four eigen-values, λi , and four corresponding eigen-vectors, iv̂ (i = 1, 2, 3, 4),  

iii vvM ˆˆˆ λ=   .        (1.15) 
Below, we will consider the case of a stable betatron motion, meaning all four eigen-values 
are confined to a unit circle and none of them is equal to ±1. For any two eigen-vectors the 
symplecticity condition of Eq. (1.14) yields the identity 
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which determines that the eigen-values always appear in two reciprocal pairs[8,16], and, 
consequently, the four eigen-values split into two complex conjugate pairs. We will denote 
them as λ1, 

*
1λ , λ2 and *

2λ , and the corresponding eigen-vectors as 1v̂ , *
1v̂ , 2v̂  and *

2v̂ , 
where * denotes the complex conjugate value.  
 From Eq. (1.16) we obtain the following set of orthogonality conditions: 
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where T*ˆˆ vv =+ . The values in the two top lines of Eq.(1.17) are purely imaginary, indeed: 
( ) ( ) vUvvUvvUvvUv ˆˆˆˆˆˆˆˆ * ++++++ −===    .    (1.18)  

Therefore we normalize the eigen-vectors as follows: 
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Other combinations can be obtained by applying the transposition and/or the complex 
conjugation to Eqs. (1.19). Similarly as for the transfer matrix elements, there are only six 
independent real scalar equations among Eqs (1.19). 

2. Relation between Eigen-vectors and Emittance Ellipsoid in 4D Phase Space 
 The turn-by-turn particle positions and angles (at the beginning of the lattice) can be 
represented as a linear combination of four independent solutions, 

( )
,sinˆcosˆsinˆcosˆ

ˆˆReˆ

2122211111

2211
21

⎟
⎠
⎞⎜

⎝
⎛ ″+′+⎟

⎠
⎞⎜

⎝
⎛ ″+′=

+= −−

ψψψψ

ψψ

vvvv

vvx

AA

eAeA ii

   (2.1) 

where four real parameters, A1, A2, ψ1 and ψ2 , represent the betatron amplitudes and phases. 
The amplitudes remain constant in the course of betatron motion, while the phases change 
after each turn.  
 Let us introduce the following real matrix 

⎥⎦
⎤

⎢⎣
⎡ ″−′″−′= 2211 ˆ,ˆ,ˆ,ˆˆ vvvvV    .      (2.2) 

This allows one to rewrite Eq. (2.1) in the compact form 
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AAξVx ˆˆ =   ,        (2.3) 
where the amplitude matrix A is 
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 Applying orthogonality conditions given by Eqs.(1.19), one can prove that matrix V̂  is a 
symplectic matrix. It can be seen explicitly as follows:  
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Here we took into account that every matrix element in matrix VUV ˆˆ T  can be calculated 
using vector multiplication of Eqs. (1.19). Furthermore, the symplecticity of matrix V̂  yields 
the following useful expression for the inverse matrix, 1ˆ −V : 

UVUV Tˆˆ 1 −=−     ,       (2.7) 
where we took into account that  UTU = I and UT = −U, and I is the identity matrix. 
 Let us consider an ensemble of particles, whose motion (at the beginning of lattice) is 
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with 
extreme betatron amplitudes. For any of these particles, Eq. (2.3) describes the 2D-subspace 
of single-particle motion, which is a subspace of the 3D surface of the ellipsoid, described by 
the bilinear form 

1ˆˆˆ =xΞxT   .        (2.8) 
This ellipsoid confines the motion of all particles. To describe a 3D surface, in addition to 
parameters ψ1 and ψ2 of Eq. (2.5), we introduce the third parameter ψ3 so that the vector ξ  
would describe a 3D sphere with a unit radius, according to the equation 
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Then, we can rewrite Eq. (2.3) in the following form, 
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,ˆˆ AξVx =         (2.11) 
which describes a 3D subspace confining all particles of the beam. In other words we can 
consider that the amplitudes of the boundary particles are parameterized by ψ3 
(A1→A1cosψ3, A2→A2cosψ3.), so that we would obtain a 4D ellipsoid. 
 Expressing ξ  from Eq. (2.11) and substituting it into Eq. (2.9), one obtains the quadratic 
form describing a 4D ellipsoid containing all particles: 
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Comparing Eqs. (2.8) and (2.12) and using Eq. (2.7), one can express the bilinear form, Ξ̂ , 
as follows : 

TT UVΞVUΞ ˆˆˆˆ ′=   ,      (2.13) 
where 11ˆ −−=′ AAΞ  is a diagonal matrix depending on two amplitudes A1 and A2, and we 
took into account that matrices 1−A  and U commute. 
 To determine the beam emittance (volume of the occupied 4D phase-space) described by 
Eq. (2.8) we invert Eq. (2.13). That yields,  

VΞVΞ ˆˆˆˆ T=′   .       (2.14) 
As can be seen, a symplectic transform V̂  reduces matrix Ξ̂  to its diagonal form. Then, in 
the new coordinate frame the 3D ellipsoid enclosing the total 4D phase-space of the beam 
can be described by the following equation: 
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It is natural to define the beam emittance as a product of the ellipsoid axes (omitting the 
factor π2/2 correcting for the real 4D volume of the ellipsoid) so that 
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Calculation of the determinant using Eq. (2.14) yields, 
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Here we took into account that 1)ˆdet( =V , which is a direct consequence of matrix V̂  
symplecticity. Thus, the squares of amplitudes A1 and A2 can be considered as 2D emittances 
ε1 and ε2 corresponding to the eigen-vectors 1v̂  and 2v̂ . They coincide with the horizontal 
and vertical emittances of the uncoupled motion so that ε1 ε2 = ε4D. Consequently, one can 
write matrix Ξ̂′  as 
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 Similarly to the one-dimensional case the particle ellipsoid shape, described by matrix Ξ̂ , 
determines the beam emittances ε1 and ε2 , and the eigen-vectors 1v̂  and 2v̂ . In this case the 
beam emittances are reciprocal to the roots of the following characteristic equation, 
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( ) 0ˆdet =− UΞ λi  .      (2.19) 
One can prove the above using Eqs. (2.13) as follows: 
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Knowing the beam emittances and consequently Ξ′ˆ , one can obtain from Eq. (2.13) a 
system of linear equations for matrix V̂ , 

ΞVUUVΞ ′= ˆˆˆˆ  .       (2.21) 
Multiplying the above equation by lu , one obtains two equations for the eigen-vectors: 
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where l = 1, 2, and     
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We also took into account that ll vuV ˆˆ = , ll iuUu −=  and l
l

l uuΞ
ε
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=′ .  

 Taking into account Eq. (2.8) a Gaussian distribution function for coupled beam motion 
can be written in the following form: 
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Then, the second-order moments of the distribution function are 
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To carry out the integration one can perform a coordinate transform, xVy ˆˆˆ 1−= , which 
reduces matrix Ξ̂  to its diagonal form. After simple calculation one obtains the matrix of the 
second-order moments 
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One can easily prove by direct substitution that matrix Σ̂  is the inverse of matrix Ξ̂ . 
Consequently, a symplectic transform UV̂  reduces matrix Σ̂  to its diagonal form. Applying 
a similar scheme as above for obtaining emittances and eigen-vectors from matrix Ξ̂ , one 
finds that the beam emittances ε1 and ε2 can be computed from matrix Σ̂  as roots of its 
characteristic equation, 
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( ) 0ˆdet =+ IUΣ λi  , εl = λl   ,    (2.27) 
while the equations for the eigen-vectors are  

( ) 0ˆˆ =+ lli vIUΣ ε  .      (2.28) 
It also follows from Eq. (2.26) that the total beam emittance is equal to 

( )Σ̂det214 == εεε D     .      (2.29) 

3. Beta-functions for Coupled Motion 
 Employing previously introduced notation, one can describe a single-particle phase-space 
trajectory along the beam orbit as  
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motion and ),0(ˆˆ LMM =  is the transfer matrix for the entire ring. The terms )(1 sie µ− and 
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so that µ1(s) and µ2(s) would be the phase advances of betatron motion. Here β1x(s), β1y(s), 
β2x(s) and β2y(s) are the beta-functions; α1x(s), α1y(s), α2x(s) and α2y(s) are the alpha-functions 
which, as will be shown in the next section, coincide with the beta-functions’ negative half-
derivatives at regions with zero longitudinal magnetic field; and six real functions u1(s), u2(s), 
u3(s), u4(s), ν1(s) and ν2(s) are determined by the orthogonality conditions of Eq.(1.19). Below 
we will be omitting their dependence on s where it does not cause an ambiguity. Two eigen-
vectors  ˆ 1v and  ˆ 2v were chosen out of two pairs of complex conjugate eigen-vectors by 
selecting u1 and u4 to be positive. 
 The first orthogonality condition of Eqs. (1.19),  

( ) ( ) iuui 22ˆˆ 2111 −=+−=+ vUv   ,       (3.3) 
yields u1 = 1− u2 , and similarly for the second eigen-vector, u4 = 1− u3. The next two 
equations, 0ˆˆ 11 =vUv T  and 0ˆˆ 22 =vUv T , are identities.  
 Taking into account the above relations for u1 and u4, the remaining two non-trivial 
orthogonality conditions can be written as follows,       
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Multiplying both terms in Eq.(3.4) and Eq.(3.5) by their complex conjugate values one 
obtains 
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Subtracting Eqs. (3.6) yields u2=u3. Substituting u2=u3=u into the first equation of Eqs. (3.6) 
one obtains the following expression for u: 
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By definition u is a real function2 and u1 and u4 are positive. That sets that u < 1 and a 
constraint for possible values of beta- and alpha-functions: 
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Knowing u makes it easy to find ν1+ν2 and ν1−ν2 from Eqs. (3.4) and (3.5): 
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and, consequently ν1 and ν2: 
                                                 
2 Eq. (3.8) also demonstrates that if beta- and alpha-functions are not correctly chosen, so that the value of 
the discriminant is negative, u becomes imaginary, thus redetermining the alpha-functions. 
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Here n and m are arbitrary integers. As one can see from Eqs. (3.10) and (3.11) ν− and ν+ are 
determined modulo 2π, but ν1 and ν2 are determined modulo π. Actually there are only two 
independent solutions. The first one corresponds to the case when both n and m have the 
same parity, which is equivalent to m+n = m-n = 0. The second one corresponds to different 
parity of m and n, which is equivalent to m+n = m-n = 1.  
 Below we will call thirteen functions, β1x, β1y, β2x, β2y, α1x, α1y, α2x, α2y, u, ν1, ν2, µ1 and  µ2 
the generalized Twiss functions. Only 10 of them are independent. Other can be determined 
from the symplecticity conditions. Although for known eigen-vectors the Twiss parameters 
can be determined uniquely it is not the case if we know only beta-functions. In this an 
application of symplecticity conditions leaves four independent solutions for the eigen-
vectors. Two of them are related to the sign choice for u in Eq. (3.8), and other two (for 
each choice of u) are related to uncertainty of ν1 and ν2 in Eq. (3.11). The later is related to 
the fact that the mirror reflection with respect to the x or y axis does not change β’s and α’s 
but changes the relative signs for the x and y components of the eigen-vectors3, with 
subsequent change of ν1 and ν2 by π. It is opposite to the case Edwards-Tang 
parameterization (see Section 6), where knowing eigen-vectors does not yield unique 
solution for the Twiss parameters but knowing Twiss parameters uniquely determines eigen-
vectors.  
 Finally, we can express the eigen-vectors 1v̂  and 2v̂  in the following form: 
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That yields the following expression for matrix V̂  (see Eq.(2.2)) 
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3 It can also be achieved by change of the coupling sign (simultaneous sign change for gradients of all skew 
quads and magnetic fields of all solenoids), which does not change the beta-functions but does change the 
ν-functions by π. 
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Here ν1 and ν2 and u are determined by the beta- and alpha-functions from Eqs. (3.8), (3.10) 
and (3.11).  
 In the case of weak coupling one should normally choose 1v̂  as the eigen-vector, which 
mainly relates to the horizontal motion, and 2v̂  to the vertical motion. In the case of strong 
coupling the choice is arbitrary. As can be seen from Eq. (3.12), in determining beta- and 
alpha-functions, swapping two eigen-vectors causes the following redefinitions:  β1x↔β2x , 
β1y↔β2y , α1x↔α2x , α1y↔α2y , u→1−u ,  ν1 → −ν2  and ν2→ −ν1. One can verify that Eqs. 
(3.8) and (3.10) satisfy the transformations for u, ν1 and ν2 . 
 To find the beam sizes one needs to remember that the amplitudes of beam motion 
related to the corresponding eigen-vectors are governed by Eqs. (2.11) and (2.10). Applying 
Eqs. (2.11), (3.1) and (3.12) one can parametrize the coordinates of the 4D ellipsoid interior: 

( )21
32231321 sinˆcosˆRe),,(ˆ ψψ ψεψεψψψ ii ee −− += vvx 1   .       (3.14) 

The beam sizes (projections of 4D ellipsoid to the horizontal and vertical directions) are 
determined by the maximum of x and y variations in Eq.(3.13) and are equal to 

.
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yyy

xxx
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βεβε

+=

+=
        (3.15) 

Let us to write the equation describing the beam ellipsoid in the x-y plane (the projection of 
the 4D-ellipsiod to the x-y plane) in the following form, 
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yyxx a
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xy
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x

   ,      (3.16) 

one can find the parameter α~  by determining at which x coordinate the y coordinate in Eq. 
(3.14) reaches the maximum. Comparing this result with the result following from Eq. (3.16) 
one obtains[8]: 

yyxx

yxyx

22112211

22221111 coscos~
βεβεβεβε

νεββνεββ
α

++

+
=    .          (3.17) 

Comparing Eqs. (3.15) and (3.17) to the second order moments presented in Appendix A 
one can see that the above beam sizes coincide with the rms beam sizes of the Gaussian 

distribution, and the parameterα~   can be also expressed as following 22~ yxxy=α .  

4. Derivatives of the Tunes and Beta-Functions 
 Let us consider the relations between the beta- and alpha-functions. A differential 
trajectory displacement related to the first eigen-vector can be expressed as follows: 
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 (4.1) 

Alternatively, one can express particle position through the beta-functions at the new 
coordinate s + ds: 
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Comparing both the imaginary and real parts of Eqs. (4.1) and (4.2) one obtains: 
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Similarly, one can write down equivalent expressions for the vertical displacement, 
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and  
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which yields:  
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Similar calculations carried out for the second eigen-vector yield, 
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 The time invariance requires that the direction of particle displacement corresponds to 
the velocity sign, which requires that dµ1/ds, dµ2/ds, dµ1/ds−dν1/ds and dµ2/ds−dν2/ds be 
positive. That immediately yields that in the case of zero longitudinal field u has to be in the 
[0,1] interval. This statement is also valid in the case of non-zero longitudinal field. That 
follows from the fact that the solenoidal edge focusing changes the geometrical coordinates 
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x but does not change the canonical coordinates x̂  and, consequently, does not change u 
(compare Eqs. (1.4) and (B.3)).  
 Note that the relative contributions of x and y parts in the eigen-vector normalization 
equation, 2,1,2ˆˆ =−=+ lill vUv , are proportional to u or 1-u. Therefore parameter u can be 
considered as a coupling strength. In the absence of coupling parameter u is equal to 0 (or 1 
if x and y vectors are swapped). Nevertheless, in the general case, an equality u = 0 does not 
mean an absence of coupling. As one can see from Eqs. (3.8) and (3.10) the condition u = 0 
requires Ax=Ay , and yields ( ) ( )yxxx

i iAiAe κκν −+=+  and ( ) ( )yyxx
i iAiAe κκν ++=− .  

These equations do not require auxiliary beta-functions β1y and β2x to be equal to zero, and, 
consequently, the condition u = 0 does not automatically mean absence of coupling. 
Although strictly speaking u cannot be considered as a coupling parameter it reflects strength 
of the coupling and is a good value to characterize it in the most of practical cases. In 
particular u = ½ corresponds to 100% coupling when the motion for both eigen-vectors is 
equally distributed in both planes (see an example in Appendix B). In the case of small 
coupling u << 1 (or 1-u << 1 if x and y vectors are swapped). By definition u < 1, and usually 
value of u is between 0 and 1 ( [ ]1,0∈u ) but one needs to remember that it can be outside 
this range.  It is also useful to note that u does not change in a transfer line without coupling. 
Actually, in the absence of coupling the x and y parts of the eigen-vector, xv̂  and yv̂ , are 

independent and their normalization, { }uuyxyx −=+ 1,ˆˆ ,2, vUv , does not change because the 
determinants of the corresponding 2×2 matrices are equal to 1. Here U2 is the 2D unit 
symplectic matrix.  

5. Representation of Transfer Matrix in Terms of Generalized Twiss Functions 

 One can derive a useful representation of the transfer matrix ),(ˆˆ
212,1 ssMM ≡  between 

two points of a transfer line in terms of the generalized Twiss functions. Using the 
definitions of eigen-vector and matrix V̂  (see Eqs.(3.1) and Eq.(2.2))  one can derive the 
following identity 

1122
ˆˆˆ   VMSV =     .        (5.1) 

Here 1V̂  and 2V̂ are the V̂  matrices given by Eq. (3.13) for the initial and final points. The 
matrix S is  
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where ∆µ1,2 is the betatron phase advances between points 1 and 2. Multiplying both sides of 
Eq.(5.2) by the inverse matrix, UVUV T

1
1

1
ˆˆ −=− , as given by Eq.(2.7), allows one to express 

the transfer matrix, 12M̂ , in the form 
UVSUVM T

1212
ˆˆˆ    −=     .       (5.3) 
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 In the case of the one-turn transfer matrix M̂  the matrices 1V̂  and 2V̂  are equal and Eq. 
(5.3) simplifies. Explicit expressions of matrix M̂  as well as matrices Ξ̂  and Σ̂  are presented 
in Appendix A. 

6. Edwards-Teng Parametrization 

 The Edwards-Teng parametrization[6] is based on a canonical transform R~  which reduces 
a 4×4 transfer matrix,  
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M̂    ,      (6.1) 

to its normal modes form  
1~ˆ~~ −= RMRM    ,      (6.2) 

where  
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and P, p, Q, q, A and B are 2×2 matrices. Teng suggested parametrizing a symplectic matrix 
R~  as follows: 
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where E is the unit 2×2 matrix, and D is a 2×2 symplectic matrix, 
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=

dc
ba

D    ,        (6.5) 

so that 1=− bcad . Thus, matrix R~  is parametrized by four parameters: a, b, c and φ. Matrix 
M~  describes the particle motion in new coordinates and can be parametrized by six Twiss 
parameters. Finally, one obtains ten parameters to fully describe the transfer matrix M̂ . The 
six Twiss parameters β1, α1, µ1, β2, α2, and µ2 are so called the Twiss parameters of the 
decoupled motion. Edwards and Teng expressed them through the transfer matrix elements.  
 In the course of this section we will express them through the eigen-vectors. As will be 
seen below, this procedure reveals the close relation of the two representations and sheds 
additional light on the physical meaning of both parameter sets. 
 Expressing matrix M̂  through M~  in Eq. (6.2) and substituting the result into Eq. (1.15), 
one obtains 

 iii vvRMR ˆˆ~~~ 1 λ=−    .       (6.6) 
Eq. (6.6) can be rewritten as 

iii vvM ~~~ λ=    ,        (6.7) 
where the vector  

ii vRv ˆ~~ =         (6.8) 

is the eigen-vector of matrix M~ . To determine matrix )(~~ sRR ≡  we take into account that 
vectors iv~  represent decoupled motion; i.e., the vector elements corresponding to another 
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plane are equal to zero. Using the definitions of ivR ˆ,~  and expressing iv~ through the Twiss 
parameters of the decoupled motion, one can rewrite Eqs. (6.8) in the form: 
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Eqs. (6.9) represent eight scalar equations and they allow one to determine the parameters of 
matrix R~  as well as the beta- and alpha-functions of the decoupled motion. Using the last 
two equations in Eq. (6.9a) and the first two equations in Eq. (6.9b), we obtain the following 
equations for matrix R~  parameters:  
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        (6.10) 

Here the following notation was introduced: φtanaat = , φtanbbt = , φtancct =  and 
φtanddt = .  Taking into account that at , bt , ct  and dt  are real parameters, one can separate 

the real and imaginary parts in Eq. (6.10). That yields the following four solutions:  
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and four useful identities 
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The identities can be directly derived from the symplecticity of matrix V̂ . Using Eq.(2.6) 
one immediately obtains that IUVUV −=Tˆˆ . Using the explicit definition of the matrix V̂ , 
Eq.(5.1), and performing matrix multiplication, after some algebra, one obtains these 
identities in the off-diagonal 2×2 block of the resulting matrix.  
 Using matrix D symplecticity and Eqs.(6.11), after simple algebra one obtains 

u
ucbda tttt −

=−=
1

tan 2 φ     .      (6.13) 

That finally yields:  
u±=φsin     .        (6.14) 

 Now using the two first equations in Eq. (6.9a) and the two last equations in Eq. (6.9b), 
one obtains equations for the beta- and alpha-functions of the decoupled motion:  
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After lengthy calculation employing identities (6.12), one finally reduces the above equations 
to the simple form: 
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As can be seen, although Eq. (6.14) yields four different values for angle φ, while, other 
elements of matrix R~  and the beta- and alpha-functions of the decoupled motion are 
uniquely related to the generalized Twiss parameters.  
 The betatron motion in the normal modes representation can be written in the following 
form  

)0(~),0(~)(~ xMx ss =    ,        (6.17) 
where  

)0(~),0(ˆ)(~),0(~ 1−= RMRM sss .       (6.18) 
Edwards and Teng determined the phase advance of the betatron motion using a standard 
recipe for the decoupled motion: 

)0(~),0(~)(~ )(
i

si
i ses i vMv =− µ    .      (6.19) 

Using the definition of matrix ),0(~ sM  of Eq. (6.18), we can rewrite Eq. (6.19) as 
)0(ˆ),0(ˆ)0(ˆ)0(~),0(~)(~)(ˆ 1)(

ii
si

i ssses i vMvRMRv == −− µ    .   (6.20) 
As can be seen, the obtained equation coincides with the definition of betatron phase 
advance of Section 4 (see Eq. (3.1) and below), thus proving that the betatron phase 
advances for both parametrizations are the same.   

Discussion 
 This article introduces further development of the coupled betatron motion 
representation introduced in Refs. [6] and [7]. Our approach is based on a parametrization of 
the 4×4 symplectic transfer matrix by introducing ten functions: four beta-functions, four 
alpha-functions and two betatron phase advances, which we call the generalized Twiss 
functions. The beta-functions have similar meaning to the Courant-Snyder parametrization, 
and the definition of alpha-functions coincides with the definition for uncoupled motion at 
regions with zero longitudinal magnetic field, where they are equal to negative half-
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derivatives of the beta-functions. The approach is based on the parametrization of 
normalized eigen-vectors. Knowing the eigen-vectors, one can easily obtain the generalized 
betatron functions employing Eq.(3.2). Eqs. (3.2), (3.8) and (3.10) allow one to perform the 
inverse operation of finding eigen-vectors from the generalized Twiss parameters. A useful 
representation of a transfer matrix in terms of the generalized Twiss functions is also 
introduced in Section 5.  
 A definition of 4D emittance is introduced for an ensemble of particles, whose motion is 
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with 
extreme betatron amplitudes. Eqs. (2.8) and (A.2) determine the bilinear form Ξ̂  describing 
this beam boundary. Consequently, the beam density distribution function can be written as  

)1ˆˆˆδ(),,,( −= xΞxT
yx Apypxf   ,       

in the case of KV-distribution, and as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
ˆˆˆ

exp),,,( xΞxT

yx Apypxf   ,       

in the case of Gaussian distribution. The chosen normalization of the eigen-vectors, Eqs. 
(1.19), yields a simple relation between the beam emittances related to the eigen-vectors and 
total 4D emittance, 214 εεε =D . Knowing the bilinear form Ξ̂  or the matrix of second-order 
moments jiij xx ˆˆ≡Σ , one can compute corresponding beam emittances, eigen-vectors and, 
consequently, generalized Twiss functions using Eqs. (2.19), (2.22) or Eqs. (2.27), (2.28). 
 A comparison of the developed parametrization with the Edwards-Teng parametrization 
provided additional insight for both parametrizations. First, it proved that the betatron 
motion phase advances for both parametrizations are equal; i.e,. the betatron phase advance 
for the Edwards-Teng representation is directly related to particle oscillations in the x or y 
plane, depending on which plane a particular eigen-vector is referenced to. Second, 
Edwards-Teng beta- and alpha-functions are simply related to the corresponding generalized 
beta- and alpha-functions: ( ) ( )uu ixiixi −=−= 1,1 ααββ , where u is the coupling 
parameter directly related to the angle of Teng’s rotation, u=φ2sin . 
 Unlike the Edwards-Teng parameterization the Mais-Ripken parameterization (as well as 
the parameterization developed in this article) allows one to obtain the unique solution for 
the generalized Twiss parameters from the known ring transfer matrix or the eigen-vectors. 
There are two linearly independent solutions in the case of Edwards-Teng parameterization. 
On the contrary, if one needs to determine the transfer matrix from the 10 Twiss parameters 
the Edwards-Teng parameterization yields the unique solution, while the parameterization 
developed in this article yields four solutions.  To choose a unique solution one additionally 
needs to know which of two choices for u and ν1 (or ν2) needs to be taken (see discussion 
after Eq. (3.11)). 
 The presented parametrization has been proven useful for both analytic and numerical 
analysis of coupled betatron motion in circular machines and transfer lines. Although we 
considered only xy-coupled motion in the article we would like to note that all results 
obtained in Section 2 are also applicable to three-dimensional particle motion. It is important 
to note that although the canonical coordinates were used throughout the article, this issue 
usually does not create complications in practical applications of the developed formalism 
because the canonical and geometric coordinates coincide at regions with zero longitudinal 
magnetic field. For example, the software developed by one of the authors for coupled-
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motion analysis always uses transfer matrices which start and end at points with zero 
longitudinal magnetic field, and thus, the canonical and geometric coordinates always 
coincide. Appendix B shows an example of analysis of how the strongly coupled motion for 
the Fermilab electron cooling project has been analyzed with the developed formalism. 
 The authors are grateful to Y. Chao, G. Krafft, L. Harwood and S. Corneliussen for careful reading of 
the manuscript and useful suggestions for improving clarity. 

 

Appendix A. Explicit Expressions for Transfer Matrix, Bilinear Form and Matrix of 
Second Order Moments 

 Performing matrix multiplication in Eq.(5.4) allows one to express transfer matrix 
elements through the generalized Twiss functions: 

( ) 22211111 sincossincos1ˆ µαµµαµ xx uuM +++−=   ,    (A.1.1) 
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( ) 22112144 sinsincos1cosˆ µαµαµµ yyuuM −−−+=   .           (A.1.16) 
 Similarly, using Eq. (2.13), one can express elements of the bilinear form describing the 
particle ellipsoid in 4D space: 
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 Finally, using Eq. (2.26), one can express elements of the second-order moments: 
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Appendix B. Generalized Twiss Functions for Axisymmetric Distribution Function  
 To increase Tevatron luminosity, Fermilab is developing a high-energy electron cooling 
device for the cooling of antiprotons[2]. Because of the high energy of the electron beam (~5 
MeV), it is impractical to use the standard choice used in electron cooling devices for beam 
transport where the beam moves in the longitudinal magnetic field the entire way from the 
electron gun to the collector. Nevertheless the longitudinal magnetic field is still used for 
beam focusing in the cooling section to cancel the beam defocusing due to the electron 
beam space charge, and more importantly to prevent collective instability in the electron 
beam. To neutralize the rotational motion of particles in the cooling section, the beam is 
produced in the electron gun immersed in the longitudinal magnetic field. Consequently, the 
beam transport is going to be quite sophisticated, with a large number of bends and focusing 
elements. Taking into account that the space-charge effects are comparatively small 
everywhere except the gun and the collector, it looks attractive to use the developed 
formalism for beam transport analysis. Due to strong space charge effects the beam motion 
in the gun should be analyzed by a specialized code, which calculates beam parameters at the 
exit of the electrostatic accelerator. The rest of the transport where the space charge effects 
are weak can be analyzed with the generalized Twiss functions, the initial values of which we 
calculate in this appendix. 
 At the exit of the electrostatic accelerator the electron beam distribution is axially 
symmetric, and before the beam leaves the magnetic field its distribution function is 
uncoupled and can be described by the bilinear form 
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where 0/ PmkTr ccT =ε  is the thermal emittance of the beam, rc is the cathode radius, Tc is 

the cathode temperature, P0 and m are the particle momentum and mass,  Ta εβ /2
0 = , 

( )dsdaT //00 εβα −=  and ( ) 0
2

00 1 βαγ +=  are the initial Twiss functions, and a is the 
beam radius at the electrostatic accelerator exit. We imply here that a and rc can be different 
due to focusing effects in the course of beam transport in the solenoid.  After exiting from 
the magnetic field the electrons will acquire angular momentum proportional to the radius, 
and the distribution can be characterized by the bilinear form: 
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cPeB 02/=Φ  is the rotational focusing strength of the solenoid edge, and B is the solenoid 
magnetic field.  
 To choose initial values for generalized Twiss functions4 we use the axial symmetry of the 
electron distribution function. This implies that the horizontal and vertical alpha- and beta-
functions are equal and u=1/2. Thus, we obtain for the eigen-vectors: 
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In this case the coefficients of Eq. (3.7) are 
 κx = κy =1  and  Ax=Ay=0  ,       (B.5) 

which creates uncertainty in Eqs. (3.8) and (3.10) for u, ν1 and ν2. To avoid this uncertainty 
we will use primarily Eqs. (3.4) and (3.5). Substituting Eqs.(B.4) into Eq.(3.4) yields  

                                                 
4 We could use Eqs. (2.19) and (2.22) for computing the emittances and eigen-vectors and, consequently, 
the generalized Twiss functions, but it would require significantly more complicated calculations than for 
the procedure described below . 
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021 =+− νν ii ee    ,       (B.6) 
while for Eq.(3.5) it yields an identity. The solution of Eq.(B.6) is  ν1 = − ν2 + 2π (n + 1/2) . 
As one can see there are an unlimited number of solutions for ν1 and ν2. We will choose 

2/21 πνν ==  to reach a better symmetry for the eigen-vectors. Then, the matrix V̂ is 
equal to: 
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Using Eq. (2.13) (compare also with Eqs. (A.2)) we obtain the bilinear form, 
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Comparing Eqs. (B.2) and (B.8), one can express generalized Twiss functions through the 
Twiss parameters of the beam distribution function in the magnetic field: 
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          (B.9) 

One can see that 2
21 Tεεε = , which verifies the conclusions of Section 2. 

 The developed formalism presents also a simple way to describe the vertex-to-plane 
transform suggested by Derbenev[1]. As it was presented above, the eigen-vectors of Eq.(B.4) 
represent the vertex distribution function for ν1 = ν2 = π/2, while for ν1 =0 and ν2 = π they 
correspond to the uncoupled motion, in which x and y coordinates were rotated by π/4. The 
transform from one to another set of the eigen-vectors can be performed with a matrix 
representing a decoupled motion with betatron phase advances for the x and y planes 
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different by π/2. In the case if unequal emittances ε1 and ε2 the initially axial-symmetric 
beam is transformed to an elliptic beam tilted by π/4. If the focusing system is rotated by 
π/4, the final elliptical beam is also rotated by the same angle due to the axial symmetry of 
the initial distribution. The final beam has an uncoupled distribution function with the 
emittances ε1 and ε2 corresponding to the vertical and horizontal emittances.  
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